其中,Gd3+是具有强的磁信号的顺磁离子,通过多聚赖氨酸可增加Gd3+的偶联量为一重信号放大过程,磁颗粒与Gd3+磁信号的协同效应为多重信号放大过程。将该磁探针与竞争性免疫反应相结合,可实现小分子目标物的高灵敏检测。与传统的MRS免疫传感器相比,灵敏度提高了25倍,在实际样品的检测中,和经典的高效液相色谱G质谱方法具有很好的吻合性。更为重要的是该磁信号探针同时可以作为免疫磁分离的载体,实现目标物的有效富集和快速检测的一步完成,大大简化了整个方法的操作步骤,提高了检测效率,在快速检测方面具有良好的潜力。除上述可控组装策略外,对磁颗粒进行表面修饰也是构建新型磁探针、提升传感器性能的有效方式。
Lee等通过金属配位将聚乙二醇改性的胆红素(poly(ethyleneglycol)Gmodifiedbilirubin(PEGGBR),PEGGBR)包被于超顺磁性氧化铁纳米颗粒(SPIONs)表面,制备了PEGGBR@SPIONs磁探针,并用于活性氧(ROS)的检测(图4C)。其基本原理是:当ROS存在时,PEGGBR包覆层能够被氧化为水溶性的PEGG胆绿素,并进一步被氧化为终产物,进而从SPIONs表面脱落。在生物环境中,由于吸引力和不稳定性,脱落包覆层的SPIONs相互聚集,产生状态变化,从而实现ROS的定量分析。研究结果表明,PEGGBR@SPIONs磁探针具有高胶体稳定性,能够实现生理学环境下ROS的高灵敏分析,在临床诊断领域具有良好的应用前景。随着纳米材料及纳米科技的发展,新型纳米磁探针将是磁弛豫生物传感分析方向具有代表性的突破点之一。
2.4微流控芯片MRS微流控芯片技术又被称为芯片上的实验室(labGonGaGchip),具有分析速度快、样品用量少、自动化程度高、检测成本低等优点,在生化分析、临床诊断、公共卫生监测等方面应用广泛。Weissleder课题组将微流控芯片技术、磁生物传感技术与微型核磁共振仪结合开发了一种小型诊断磁共振(DMR)系统(图5)。该DMR系统主要包括四部分:用于核磁共振测量的微线圈阵列、用于样品处理和混合的微流体网络、微型核磁共振电子器件和用于产生极化磁场的永磁体。该系统将多个平面微线圈排列在一个阵列中,可实现多通道检测,并能较好地适应器件的小型化;微流体系统便于控制小体积液体和实现目标物的分离富集。
此外,该系统引入基于磁颗粒状态改变的MRS,实现信号的放大与读出。整个DMR系统可被设计为独立便携的设备,能够实现细菌、蛋白生物标志物等目标物的快速检测。此工作所开发的微型核磁共振仪为第一代产品(DMRG1),该课题组还对其进行了升级,例如第二代DMR系统(DMRG2)、第三代DMR系统等,在进样体积、射频磁场均匀性、温度控制、便携性等多方面进行了优化,拓宽了其应用范围,在快速检测方向具有良好的推动作用。
3讨论与展望磁弛豫生物传感器作为一种集物理、化学、生物等多学科交叉的新型分析技术,具有分析速度快、信噪比高、操作简单等优点,基于不同原理的磁弛豫生物传感器(例如基于磁颗粒状态/数量变化的磁弛豫传感器、基于顺磁离子的磁弛豫传感器等)已经应用于食品安全和临床诊断等多个领域,对快速检测技术的发展具有重要的推动作用。我们相信未来在以下几个方面开展深入研究将会推动磁弛豫生物传感器得到更广泛的应用:
(1)开发新型磁纳米探针。随着纳米科学技术的发展,各种纳米材料层出不穷,为寻找和可控组装性能优良的磁纳米探针提供了有利的条件。此外,新型磁纳米探针的开发能够有效提高磁弛豫生物传感器的信号读出性能,拓宽磁弛豫生物传感器在快速检测领域的应用。
(2)多重目标物同时检测及高通量检测进一步发展。在临床诊断、食品安全、环境监测等领域中均存在大量种类和数量的目标物需要快速检测,开发多重目标物同时检测和高通量的磁弛豫生物传感器或基于磁弛豫生物传感器的快速检测平台具有重要的现实意义。
(3)磁弛豫传感器的自动化、智能化和便携化。虽然已有基于微流控芯片的DMR系统的报道,但目前大部分磁弛豫生物传感器在智能化、自动化、便携化方面仍存在一定的不足,需要不断与其他学科交叉融合,提高磁弛豫生物传感器在此方面的性能。
(4)新型磁弛豫传感机制的探索。新型的磁弛豫传感机制是构建新型磁弛豫生物传感器的基础,能够从根本上推动磁弛豫传感技术的进一步发展,也是本领域研究人员需要持续关注的重点。
声明:本文所用图片、文字来源《华中农业大学学报》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系
相关链接:检测,多聚赖氨酸,胆红素
文章版权声明:除非注明,否则均为本站原创文章,转载或复制请以超链接形式并注明出处